Skip to main content
The role of pores for water transport in plants
Suggested reading
  • Choat, B., Badel, E., Burlett, R., Delzon, S., Cochard, H., Jansen, S. (2016). Noninvasive measurement of vulnerability to drought-induced embolism by X-ray microtomography. Plant Physiology170: 273-282.
  • Loepfe, L., Martinez-Vilalta, J., Piñol, J., Mencuccini, M. (2007) The relevance of xylem network structure for plant hydraulic efficiency and safety. Journal of Theoretical Biology 247: 788-803.
  • Mercury, L., Azaroual, M., Zeyen, H., & Tardy, Y. (2003). Thermodynamic properties of solutions in metastable systems under negative or positive pressures. Geochimica et Cosmochimica Acta 67: 1769-1785.
  • Mrad A, Domec J-C, Huang C-W, Lens F, Katul G. (2018) A network model links wood anatomy to xylem tissue hydraulic behaviour and vulnerability to cavitation. Plant, Cell & Environment 41: 2718-2730.
  • Schenk, H.J., Espino, S., Romo, D.M., Nima, N., Do, A.Y.T., Michaud, J.M., Papahadjopoulos-Sternberg, B., Yang, J., Zuo, Y.Y., Steppe, K., Jansen, S. (2017). Xylem surfactants introduce a new element to the cohesion-tension theory. Plant Physiology 173: 1177-1196.
  • Schenk H.J., Michaud J.M., Espino S., Melendres T., Roth M.R., Welti R., Kaack L., Jansen S. (2021) Lipids in xylem sap of woody plants across the angiosperm phylogeny. The Plant Journal 105:1477-1494. 
  • Shi, W., Dalrymple, R.M., McKenny, C.J., Morrow, D.S., Rashed, Z.T., Surinach, D.A., Boryeko, J.B. (2020) Passive water ascent in a tall, scalable synthetic tree. Scientific Reports 10: 230.
  • Tyree, M. T., & Ewers, F. W. (1991). The hydraulic architecture of trees and other woody plants. New Phytologist 119: 345-360.
  • Venturas, M.D., Sperry, J.S., Hacke, U.G. (2017) Plant xylem hydraulics: What we understand, current research, and future challenges. Journal of Integrative Plant Biology 59: 356-389.
  • Yang, J., M Michaud, J., Jansen, S., Schenk, H. J., Zuo, Y. Y. (2020). Dynamic surface tension of xylem sap lipids. Tree Physiology 40: 433-444.
  • Zhang, Y., Carmesin, C., Kaack, L., Klepsch, M. M., Kotowska, M., Matei, T., Schenk, H.J., Weber, M., Walter, P., Schmidt, V., Jansen, S. (2020). High porosity with tiny pore constrictions and unbending pathways characterize the 3D structure of intervessel pit membranes in angiosperm xylem. Plant, Cell & Environment43: 116-130.
Useful tools

Water transport in plants is most commonly studied based on experimental work to visualize and quantify sap flow and hydraulic failure under variable environmental conditions such as freeze-thawing and drought stress. Light microscopy, electron microscopy, and X-ray tomography provide useful approaches to study the anatomy in detail. There are also several models available that aim to understand water transport in plants within a soil-plant-atmosphere continuum.

References
  • Jansen, S., Schenk, H.J. (2015) On the ascent of sap in the presence of bubbles. American Journal of Botany 102: 1-3.
  • Kaack, L., Altaner, C.M., Carmesin, C., Diaz, A., Holler, M., Kranz, K., Neusser, G., Odstrcil, M., Schenk, H.J., Schmidt, V., Weber, M., Zhang, Y., Jansen, S (2019) Function and three dimensional structure of intervessel pit membranes in angiosperm xylem: a review. International Association of Wood Anatomists Journal 40: 673-702.
  • Kaack, L., Weber, M., Isasa, E., Karimi, Z., Li, S., Pereira, L., Trabi, C., Zhang, Y., Schenk, H.J., Schuldt, B., Schmidt, V., Jansen S. (2021) Pore constrictions in intervessel pit membranes provide a mechanistic explanation for xylem embolism resistance in angiosperms. New Phytologist 230: 1829-1843.
  • Tyree, MT, Zimmermann, MH. (2002) Xylem structure and the ascent of sap. Berlin: Springer-Verlag.