
Suggested reading
- P. de Anna, A. A. Pahlavan, Y. Yawata, R. Stocker, and R. Juanes, “Chemotaxis under flow disorder shapes microbial dispersion in porous media,” Nat. Phys., pp. 1-27, 2020.
- T. Bhattacharjee, D. B. Amchin, J. A. Ott, F. Kratz, and S. S. Datta, “Chemotactic Migration of Bacteria in Porous Media,” bioRxiv, no. 1, p. 2020.08.10.244731, 2020.
- R. M. Ford and R. W. Harvey, “Role of chemotaxis in the transport of bacteria through saturated porous media,” Adv. Water Resour., vol. 30, no. 6–7, pp. 1608–1617, 2006.
- R. B. Marx and M. D. Aitken, “Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system,” Environ. Sci. Technol., vol. 34, no. 16, pp. 3379–3383, 2000.
- V. Pande, S. C. Pandey, D. Sati, V. Pande, and M. Samant, “Bioremediation: an emerging effective approach towards environment restoration,” Environ. Sustain., vol. 3, no. 1, pp. 91–103, 2020.
Useful tools
- COMSOL Multiphysics software packages use finite element methods to solve partial differential equations that describe the transport processes of microorganisms in porous media.
- Microfluidic devices enable direct visualization of microorganisms within structured porous media designs.
- Widefield microscopy is used to observe and track individual microorganisms and the distribution of bacterial populations in microfluidic devices.
References
- J. S. T. Adadevoh, C. A. Ramsburg, and R. M. Ford, “Chemotaxis Increases the Retention of Bacteria in Porous Media with Residual NAPL Entrapment,” Environ. Sci. Technol., vol. 52, no. 13, pp. 7289–7295, 2018.
- J. S. T. Adadevoh, S. Ostvar, B. Wood, and R. M. Ford, “Modeling Transport of Chemotactic Bacteria in Granular Media with Distributed Contaminant Sources,” Environ. Sci. Technol., vol. 51, no. 24, pp. 14192–14198, 2017.
- X. Wang, L. M. Lanning, and R. M. Ford, “Enhanced Retention of Chemotactic Bacteria in a Pore Network with Residual NAPL Contamination,” Environ. Sci. Technol., vol. 50, no. 1, pp. 165–172, 2016.