Two-Step Diffusion in Cellular Hygroscopic (Vascular Plant-Like) Materials

Two-Step Diffusion in Cellular Hygroscopic (Vascular Plant-Like) Materials

Marion Cocusse, Matteo Rosales, Benjamin Maillet, Rahima Sidi-Boulenouar, Elisa Julien, Sabine Caré, Philippe Coussot

ImageScienceAdvances - Two-Step Diffusion in Cellular Hygroscopic (Vascular Plant-Like) Materials

Vascular plants, a vast group including conifers, flowering plants, etc., are made of a cellular hygroscopic structure containing water in the form of either free (i.e., in a standard liquid state) or bound (i.e., absorbed in the cell walls) water. Using nuclear magnetic resonance techniques, we distinguish the dynamics of bound water and free water in a typical material (softwood) with such a structure, under convective drying. We show that water extraction relies on two mechanisms of diffusion in two contiguous regions of the sample, in which respectively the material still contains free water or only contains bound water. However, in any case, the transport is ensured by bound water. This makes it possible to prolong free water storage despite dry external conditions and shows that it is possible to extract free water in depth (or from large heights) without continuity of the free water network.

SCIENCE ADVANCES, 8, (2022)
Corresponding Author: Philippe Coussot


InterPore Members can promote their publications to the community via the InterPore In Journals Section of the Newsletter. If you wish to do so, please submit your publication highlight to newsletter@InterPore.org. Clearly indicate which of the authors is an InterPore member (or the institute with an Institutional Membership). Note that we will not review the entries nor does InterPore endorse the published work. Furthermore, we publish on a “submitted first, published first” basis. The highlighted publication should be no older than 6 months (available online).

The highlight should be short (max 100 words) and contain an illustration. Please note that we offer this opportunity exclusively to InterPore members. If you would like to become a member, please have a look here.